SLAMflex SE  0.1.0
SLAMflex provides detection and tracking of dominant planes for smartphone devices. This plane can then be used to show AR content relative to the plane orientation. The detection of plane is performed in the field of view of the smartphone camera. In subsequent frames it is tracked. The interface returns the plane position and orientation.
Public Member Functions | Private Member Functions | Private Attributes | List of all members
TooN::LU< Size, Precision > Class Template Reference

#include <LU.h>

Public Member Functions

template<int S1, int S2, class Base >
 LU (const Matrix< S1, S2, Precision, Base > &m)
 
template<int S1, int S2, class Base >
void compute (const Matrix< S1, S2, Precision, Base > &m)
 Perform the LU decompsition of another matrix. More...
 
template<int Rows, int NRHS, class Base >
Matrix< Size, NRHS, Precision > backsub (const Matrix< Rows, NRHS, Precision, Base > &rhs)
 
template<int Rows, class Base >
Vector< Size, Precision > backsub (const Vector< Rows, Precision, Base > &rhs)
 
Matrix< Size, Size, Precision > get_inverse ()
 
const Matrix< Size, Size, Precision > & get_lu () const
 
Precision determinant () const
 Calculate the determinant of the matrix. More...
 
int get_info () const
 Get the LAPACK info. More...
 

Private Member Functions

int get_sign () const
 

Private Attributes

Matrix< Size, Size, Precision > my_lu
 
int my_info
 
Vector< Size, int > my_IPIV
 

Detailed Description

template<int Size = -1, class Precision = double>
class TooN::LU< Size, Precision >

Performs LU decomposition and back substitutes to solve equations. The LU decomposition is the fastest way of solving the equation $M\underline{x} = \underline{c}$m, but it becomes unstable when $M$ is (nearly) singular (in which cases the SymEigen or SVD decompositions are better). It decomposes a matrix $M$ into

\[M = L \times U\]

where $L$ is a lower-diagonal matrix with unit diagonal and $U$ is an upper-diagonal matrix. The library only supports the decomposition of square matrices. It can be used as follows to solve the $M\underline{x} = \underline{c}$ problem as follows:

// construct M
Matrix<3> M;
M[0] = makeVector(1,2,3);
M[1] = makeVector(3,2,1);
M[2] = makeVector(1,0,1);
// construct c
Vector<3> c = makeVector(2,3,4);
// create the LU decomposition of M
LU<3> luM(M);
// compute x = M^-1 * c
Vector<3> x = luM.backsub(c);

The convention LU<> (=LU<-1>) is used to create an LU decomposition whose size is determined at runtime.

Definition at line 69 of file LU.h.

Constructor & Destructor Documentation

template<int Size = -1, class Precision = double>
template<int S1, int S2, class Base >
TooN::LU< Size, Precision >::LU ( const Matrix< S1, S2, Precision, Base > &  m)
inline

Construct the LU decomposition of a matrix. This initialises the class, and performs the decomposition immediately.

Definition at line 75 of file LU.h.

Member Function Documentation

template<int Size = -1, class Precision = double>
template<int Rows, int NRHS, class Base >
Matrix<Size,NRHS,Precision> TooN::LU< Size, Precision >::backsub ( const Matrix< Rows, NRHS, Precision, Base > &  rhs)
inline

Calculate result of multiplying the inverse of M by another matrix. For a matrix $A$, this calculates $M^{-1}A$ by back substitution (i.e. without explictly calculating the inverse).

Definition at line 103 of file LU.h.

template<int Size = -1, class Precision = double>
template<int Rows, class Base >
Vector<Size,Precision> TooN::LU< Size, Precision >::backsub ( const Vector< Rows, Precision, Base > &  rhs)
inline

Calculate result of multiplying the inverse of M by a vector. For a vector $b$, this calculates $M^{-1}b$ by back substitution (i.e. without explictly calculating the inverse).

Definition at line 132 of file LU.h.

template<int Size = -1, class Precision = double>
template<int S1, int S2, class Base >
void TooN::LU< Size, Precision >::compute ( const Matrix< S1, S2, Precision, Base > &  m)
inline

Perform the LU decompsition of another matrix.

Definition at line 82 of file LU.h.

template<int Size = -1, class Precision = double>
Precision TooN::LU< Size, Precision >::determinant ( ) const
inline

Calculate the determinant of the matrix.

Definition at line 192 of file LU.h.

template<int Size = -1, class Precision = double>
int TooN::LU< Size, Precision >::get_info ( ) const
inline

Get the LAPACK info.

Definition at line 201 of file LU.h.

template<int Size = -1, class Precision = double>
Matrix<Size,Size,Precision> TooN::LU< Size, Precision >::get_inverse ( )
inline

Calculate inverse of the matrix. This is not usually needed: if you need the inverse just to multiply it by a matrix or a vector, use one of the backsub() functions, which will be faster.

Definition at line 158 of file LU.h.

template<int Size = -1, class Precision = double>
const Matrix<Size,Size,Precision>& TooN::LU< Size, Precision >::get_lu ( ) const
inline

Returns the L and U matrices. The permutation matrix is not returned. Since L is lower-triangular (with unit diagonal) and U is upper-triangular, these are returned conflated into one matrix, where the diagonal and above parts of the matrix are U and the below-diagonal part, plus a unit diagonal, are L.

Definition at line 177 of file LU.h.

template<int Size = -1, class Precision = double>
int TooN::LU< Size, Precision >::get_sign ( ) const
inlineprivate

Definition at line 180 of file LU.h.

Member Data Documentation

template<int Size = -1, class Precision = double>
int TooN::LU< Size, Precision >::my_info
private

Definition at line 206 of file LU.h.

template<int Size = -1, class Precision = double>
Vector<Size, int> TooN::LU< Size, Precision >::my_IPIV
private

Definition at line 207 of file LU.h.

template<int Size = -1, class Precision = double>
Matrix<Size,Size,Precision> TooN::LU< Size, Precision >::my_lu
private

Definition at line 205 of file LU.h.


The documentation for this class was generated from the following file: