|
| | IRLS (int size=Size) |
| |
| template<int Size2, typename Precision2 , typename Base2 > |
| void | add_mJ (Precision m, const Vector< Size2, Precision2, Base2 > &J) |
| |
| void | operator+= (const IRLS &meas) |
| |
| Matrix< Size, Size, Precision > & | get_true_C_inv () |
| |
| const Matrix< Size, Size, Precision > & | get_true_C_inv () const |
| |
| Precision | get_residual () |
| |
| void | clear () |
| |
| | WLS (int size=0) |
| | Default constructor or construct with the number of dimensions for the Dynamic case. More...
|
| |
| void | clear () |
| | Clear all the measurements and apply a constant regularisation term. More...
|
| |
| void | add_prior (Precision val) |
| |
| void | add_prior (const Vector< Size, Precision, B2 > &v) |
| |
| void | add_prior (const Matrix< Size, Size, Precision, B2 > &m) |
| |
| void | add_mJ (Precision m, const Vector< Size, Precision, B2 > &J, Precision weight=1) |
| |
| void | add_mJ (const Vector< N, Precision, B1 > &m, const Matrix< Size, N, Precision, B2 > &J, const Matrix< N, N, Precision, B3 > &invcov) |
| |
| void | add_mJ_rows (const Vector< N, Precision, B1 > &m, const Matrix< N, Size, Precision, B2 > &J, const Matrix< N, N, Precision, B3 > &invcov) |
| |
| void | add_sparse_mJ_rows (const Vector< N, Precision, B1 > &m, const Matrix< N, S1, Precision, B2 > &J1, const int index1, const Matrix< N, N, Precision, B3 > &invcov) |
| |
| void | add_sparse_mJ_rows (const Vector< N, Precision, B1 > &m, const Matrix< N, S1, Precision, B2 > &J1, const int index1, const Matrix< N, S2, Precision, B3 > &J2, const int index2, const Matrix< N, N, Precision, B4 > &invcov) |
| |
| void | compute () |
| |
| void | operator+= (const WLS &meas) |
| |
| Matrix< Size, Size, Precision > & | get_C_inv () |
| | Returns the inverse covariance matrix. More...
|
| |
| const Matrix< Size, Size, Precision > & | get_C_inv () const |
| | Returns the inverse covariance matrix. More...
|
| |
| Vector< Size, Precision > & | get_mu () |
| | Returns the update. With no prior, this is the result of . More...
|
| |
| const Vector< Size, Precision > & | get_mu () const |
| | Returns the update. With no prior, this is the result of . More...
|
| |
| Vector< Size, Precision > & | get_vector () |
| | Returns the vector . More...
|
| |
| const Vector< Size, Precision > & | get_vector () const |
| | Returns the vector . More...
|
| |
| Cholesky< Size, Precision > & | get_decomposition () |
| | Return the decomposition object used to compute . More...
|
| |
| const Cholesky< Size, Precision > & | get_decomposition () const |
| | Return the decomposition object used to compute . More...
|
| |
template<int Size, typename Precision, template< typename Precision > class Reweight>
class TooN::IRLS< Size, Precision, Reweight >
Performs iterative reweighted least squares.
- Parameters
-
| Size | the size |
| Reweight | The reweighting functor. This structure must provide reweight(), true-scale() and objective() methods. Existing examples are Robust I, Robust II and ILinear. |
Definition at line 107 of file irls.h.